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Lagrangian measurement of fluid-particle motion in 
an isotropic turbulent field 

By YUKINARI SATOt AND KAZUO YAMAMOTOS 
Department of Chemical Engineering, Yokohama National University, Yokohama 240, Japan 

(Received 21 February 1986) 

By means of an optical tracer-particle tracking method, measurements for 
Lagrangian characteristics of turbulence, including the mean-square value of 
lateral diffusion from a point source 7, the r.m.s. value of fluctuating velocity v’, 
the velocity autocorrelation coefficient RL(7), and the integral scale AL, were made 
in approximately isotropic turbulent flow behind a grid. Comparison of these 
Lagrangian data with the Eulerian integral scale Ar and the double velocity 
correlation coefficient f ( r )  led to the following results: (i) for a moderate turbulent 
Reynolds-number range of Re, = 20-70, the ratio /?( = A L / A f )  is within the values 
of 0.6-0.3, becoming lower as Re, increases, and (ii) the distribution of R ,  against 
time lag r is analogous to that off against /?r/vf.  Further, it was confirmed by both 
theoretical analysis and experiments that the growth of -P(t) was weakened by the 
decay of turbulent energy, particularly so for long diffusion times. 

1. Introduction 
In discussing the mixing and diffusion of fluid in a turbulent flow, Taylor’s 

turbulent diffusion theory (Taylor 1921 ; Hinze 1975), known as ‘one-particle 
analysis’, is often quoted, and many both theoretical and experimental aspects of 
this have been investigated. When investigating the diffusion of fluid elements, i.e. 
‘fluid particles ’, which is usually dealt with in an Eulerian framework, Lagrangian 
statistical characteristics such as the Lagrangian velocity autocorrelation play a very 
important role. Several theoretical approaches have there€ore been proposed for 
determining the Lagrangian characteristics either directly or starting from their 
relationship to the Eulerian statistical Characteristics of the random field. The most 
notable work among them may be the independence approximation, known as 
‘Corrsin’s conjecture ’ proposed by Corrsin (1959). The independence approximation 
wits used to explore the relationship between the Lagrangian autocorrelation and the 
Eulerian correlation by Saffman (1962), and its validity was confirmed theoretically 
by Weinstock (1976). Meanwhile, a numerical simulation of the Lagrangian auto- 
correlation was made by Kraichnan (1970). Hence it was possible to estimate whether 
the Lagrangian timescale is greater than, less than or equal to the Eulerian timescale. 
However, experimental data on the Lagrangian characteristics such as the mixing 
length, the Lagrangian velocity autocorrelation, etc. are too sparse and inaccurate 
to verify these approximations because of the absence of reliable methods for 
measuring the Lagrangian statistical characteristics of turbulence. 

Present address: R & D division, Nihon Kagaku Kogyo Co. Ltd, 2-1, Shimizu, Suita, Osaka 
565, Japan. 
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In  this study a measuring system has been developed for the acquisition of data 
on accurate Lagrangian statistical characteristics such as the velocity autocorrela- 
tion, based on the principle of an optical tracer-particle tracking method. The tracer 
particle used was sufficiently small‘to be almost without a buoyancy effect and so 
could be approximately regarded as a ‘fluid particle’. This paper describes the 
measuring system and presents the experimental results for the Lagrangian properties 
of a flow in a nearly homogeneous and isotropic turbulent field behind a grid; these 
are quantitatively compared with Eulerian results in taking account of the decay of 
turbulence. 

7 7 -  

2. Theoretical relations 
2.1. Fundamental equations for isotropic turbulence 

According to Taylor’s turbulent diffusion theory (1921), the lateral diffusion of fluid 
particles a t  time elapsed t due to fluctuation velocities v for homogeneous isotropic 
turbulence is expressed as a mean-square value 7, as follows (see figure 1) : 

T(t) = 2StS~’v(t’)v(t’-r)drdt’. 0 0  

The Lagrangian velocity autocorrelation coefficient RL(7) for time lag 7 is defined 
bv 

where v’ is the r.m.8. value of Lagrangian fluctuation velocity v, and the overbar 
denotes the ensemble-averaged value for a large number of fluid particles. Strictly, 
R, should also be expressed as a function of time t as well as T ,  but t is usually omitted 
in (2) because of the approximately steady treatment. Expressing the mean-square 
lateral diffusion TZ and the turbulent diffusion coefficient gt using RL(7), we have 

and (4) 
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2.2.  Turbutent digusion in a non-decaying energy jield 
In  a homogeneous steady flow field where the decay of turbulent energy can be 
neglected, i.e. v'(t) = w'(t-r) = v', the following equations for the diffusion process 
from a fixed point gource are derived from (3) and (4) : 

and (7) 

Furthermore, substituting the empirical equation 

where FL is the integral timescale, into ( 5 )  and (6), we obtain 

and 

The relations, expressed in (9) end (lo), indicate that the effect of turbulent diffusion 
is increased by a larger intensity or scale of turbulence. 

2.3. Turbulent diffusion in a decaying energyjield 
In  a flow field where the turbulent energy decay is not negligible, i.e. d ( t )  4 d(t-4, 
as is usually encountered in actual flows, the one-particle diffusion has been expressed 
in more complicated terms by Batchelor & Townsend (1956) ; they suggested that the 
diffusion in the decay field could be treated as a eteady process within a finite time 
by introducing a new time variable 7, instead of the real time t ,  defined by 

where t s ( t )  is the inherent timescale in the turbulent field. 
Assuming that the decay of turbulent energy obeys the power law 

v'2 = A(to+t)-", (12) 

where A and n are constant for the observation time and t is the time elapsed from 
a virtual time origin, as illustrated in figure 1, and then combining (12) with (3) and 
(4), the following equations are derived (the derivation is described in the Appendix) : 

I I 1' 

(14) 
- 
P(t) = 2v3: jo exp (2my') { exp (-mr]") R,(r]")dr]" dr]', 

0 
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and 

t 
where v;=v'(O), m = l - % ,  [ = I + - ,  r = I n ( .  (15b) 

t0 

Further, on the assumption that the distribution of RL can be expressed as a steady 
exponential function for the 7-region, 

7 

integrating (13) and (14), we obtain the relations 

RL(7) = exp - - , 
T, 

Qt( t )  = -[ '2'0 2m - 1 (1  - p i ) ,  

Cl 

and 

where 

Using the dimensionless quantities 

(17) and (18a) are rewritten as 

1 
9; = -(1 +I/'Jt*)2m-l{l-(1 +Iflt*)-C1}, (20) 

and (21 a)  

Cl I#8 

where 
1 (T, < l ) ,  C ,  = m + l + - - ,  C,+C,  = 2m. 

YLO - T 
Is 

m = l-?p, Ifl = t, - &,> 
(21 b)  

9: = t * ;  Y* = t*,  for t*+O, (22) 

9: cc t*2m-1;  Y* cc t*m, for t * + o O ,  m < t .  (23) 

Further, the following approximations are easily derived from (20) and (21 a) : 

3. Experimental 
3.  I. Experimental apparatus and procedure 

The optical tracer-particle tracking method used for our Lagrangian measurements 
is fundamentally as follows. 

(i) The Lagrangian behaviour of individual tracer particles suspended in a 
turbulent fluid flow can be detected as a particle image by a photodetector through 
the use of some optics. 

(ii) Data on the position of the tracer particle at each moment, expressed in the 
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FIGURE 2. Schematic diagram of the experimental apparatus. 1 ,  2 calming section; 3 turbulence- 
generating grid ; 4 tracer-particle inlet ; 5 test section ; 6 window pane ; 7 mirror ; 8 electromagnetic 
velocimeter; 9 overflow tank; 10, 11 bubble eliminating tank; 12 particle collector; 13 filter; 
14 main tank; 15 pump; 16 flow meter; 17 flow-rate control valve; 18 flat lamp. 

(F,u’, R ,  etc.) 

FIGURE 3. Schematic diagram of the optical and measuring systems. 
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space coordinates, are continuously stored in a sub-memory, such as a magnetic-tape 
recorder, controlled by a mini-computer. 

(iii) After appropriate processing of the data and calculations, information on the 
Lagrangian characteristics of the turbulent field is obtained in the form of numerical 
values and graphic curves. 

For turbulent fluctuating fluid motion, the tracer particle must be chosen to be 
sufficiently small, i.e. less than the lengthscale of turbulence, and to be of density 
almost equal to that of the fluid, that it  does not affect the turbulence structure and 
can follow the rapid fluctuation of the fluid. The following conditions for the tracer 
particle were required on the assumption that the mean velocity is of the order of 
10 cm/s, the intensity of turbulence within lo%, the integral scale of eddy 10 mm 
or more, etc : (i) the tracer-particle is responsive to a frequency of about 20 Hz (Hinze 
1972) ; (ii) its sedimentation or ascending speed in the water flow is less than 1 mm/s; 
(iii) its diameter is preferably roughly equal to or less than the Kolmogorov scale (at 
most 1 mm), but could be less than the Taylor’s microscale (several mm), and (iv) 
the reflected light from the surface of the particle is as bright as possible. To satisfy 
these conditions as far as possible, a ‘polystyrene ball’ containing a little gas, of 
diameter 0.3-0.5 mm and of density 1 .OO f 0.02, was prepared and used as the tracer 
particle in the measurements. 

Figure 2 shows a schematic of the experimental apparatus, which has a test section 
of inner diameter 31 cm and length 100 cm, made of transport acrylic resin with an 
effective measurable dimension of about 15 x 15 om2 x 70 cm. The experiment was 
conducted in a water flow with a mean velocity up to 7 = 40 cm/s, a flow rate of 
1.8 m3/min and Reynolds number, Re, = 1 .24 x lo5. In the approximately homo- 
geneous isotropic turbulent field downstream of a turbulence-generating grid (of 
bi-plane, square-mesh type, with mesh length M = 2.0 or 0.76 cm, and round or 
square rods of diameter d = 1 .O or 0.146 cm), the Lagrangian behaviour of individual 
tracer particles, excluding buoyancy effects, in the perpendicular (2, y)-plane to the 
main flow direction ( x ) ,  could be measured by a television camera with a solid-state 
image sensor (element number: 320 x 244) through a window pane, a zoom lens, etc. 
(see figure 3). 

To obtain a reliable Lagrangian correlation coefficient R,, the spatial resolution 
of the measurements had to be sufficiently high (about 50 pm in the real measurement 
space) that the Lagrangian fluctuation velocity could be exactly detected at every 
moment (actually every & s). This was achieved by controlling the zoom lens with 
a microcomputer and by tracking the television camera in accordance with particle 
motions using an (X, Y)-moving table. Thus, RL(7) could be directly obtained from 
the definition equation (2) rather than from the second derivatives o f y .  In previous 
studies RL(7) has been obtained from (7), namely the second derivatives of F, with 
the assumption that the turbulent field was homogeneous isotropic and with 
negligible decay in intensity. Therefore, little exact data on RL(7) has been available, 
particularly for the decaying turbulent energy field. The present values of RL(7) 
obtained directly from the correlation between Lagrangian fluctuations are fairly 
accurate and also have taken account of the turbulent-energy decay. 

Some Lagrangian data measured under the experimental conditions listed in table 
1 (a) will be presented in the next section. 

3.2. Measured data 
The experimental conditions and some characteristics of the turbulence are sum- 
marized in table 1 (b). The turbulent Reynolds number ReA = u’h,/u (Ag is the lateral 

7-2 



190 Y .  Sat0 and K .  Yammoto 

- 6  -4  -2 0 2 4 6 

Xdistance (mm) 

FIQURE 4. Particle trajectories - in the (z, y)-plane. Starting point ( 0 , O ) ;  Data number 25; 
U = 26 cm/s; 2, = 30 cm downstream of a grid. 

10' 

10 

10-1 

lo-' I I 1  I I I t  I 
10-1 2 4 6 8 10-l 2 4 6 8 1  

6)  
FIQURE 5. Lateral particle diffusion from a fixed point in a grid turbulence. See table 1 for the - 

symbols and the experimental conditions. -, y2 = vi2t2; ----, cc t .  

Taylor's microscale and v the kinematic viscosity of fluid) was restricted in our 
experiments to  the moderate or low range of 20 5 Re, 6 70 because of the capability 
limits of the flow and measuring systems. A, in table 1 (b), the Eulerian longitudinal 
integral scale of f ( r ) ,  was determined from the empirical equation for the Eulerian 
measurement (Sato, Yamamoto & Mizushina 1983), as well as the longitudinal double 
velocity correlation coefficient f ( r )  for the spatial distance r .  
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0 0.2 0.4 0.6 0.8 1 
7 (8) 

FIQURE 6. Distribution of the Lagrangian velocity autocorrelation coefficient in grid turbulence. 
(a) The turbulent Reynolds number Re, = 66; ( b )  46; (c) 25. Measurements: Dan, see table 1.  
Calculations: (1) -.-, R ~ ( T  = r /v ’ ) ;  (2) -, RE(7 = Br/w’); (3) --------, &(7 = r/T); (4) ----, 
RL(7) = exp ( -7/FL). 

Figures 4,5 and 6 were prepared from the raw measured data. Figure 4 shows the 
trajectory of particles in the (5, y)-plane perpendicular to the main flow direction (2). 

Figure 5 shows the variation of lateral particle diffusion due to the turbulent 
fluctuation with time elapsed, on a logarithmic scale. It can be seen from the figure 
that for short times Y increases asymptotically along the solid straight line 

- 
P = v;v,  (24) 

and for longer times it tends to deviate down from the line gradually. In figure 6, 
the measured values of RL(7) are plotted against the lag time 7 ,  and compared with 
various calculated curves, which will be discussed in the next section. 

4. Results and discussion 
4.1. Compa&on with Eulerkn measurements 

In  figure 6 the distributions of the Eulerian autocorrelation coefficient RE are shown 
together with the Lagrangian data for RL. These values of RE were calculated from 
the Eulerian spatial double correlation coefficientf(r) based on the empirical equation 
proposed by Sato et aE. (1983); curves (l) ,  (3) and (2) represent RE(7) for the time 
lags 7 = r/v‘, 7 = r/n and 7 = ,6r/v‘ (where t!l is constant) respectively. The value of 
/3 will be given below. As is clear from figure 6, the distribution of measured RL(7) 
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FIQ~RE 7. Distribution of the Lagrangian autocorrelation coefficient normalized with the integral 
scale. (a) Measurement: RL(T/YL), see table 1 for the symbols. ( b )  Calculation: ( 1 )  -, f (r /A,)  
for Re, = 70; (2) - - - - , j ( r / A f )  for Re, = 25; (3) ------, RL(7/YL) = exp ( -7/YL). 

decreases fast compared with that of RE(7 = r/v')  represented by curve ( l ) ,  for any 
of the experimental conditions (a) ,  (b) or ( c ) .  This fact has been proved by many 
investigators (e.g. Corrsin 1959,1963; Saffman 1962; Snyder & Lumley 1971; Shlien 
& Corrsin 1974; Hinze 1975). 

Figure 7 shows the distribution of measured R, against the time lag normalized 
with the integral scale YL, compared with that of the Eulerianf(+) against r /Af  and 
the empirical exponential equation (8). Broadly, good agreement between these 
distributions was obtained except for the range of small r or r ,  7/YL or r /A ,  < 0.5. 
However, for the analysis of the turbulent diffusion process, the integral value of 
&(T) is important, as can be seen from (3), and so the detailed behaviour of RL(7) 
and its fine structure, for the short lag time in particular, is not required. 

For the integral lengthscale of turbulence, then, the ratio of Lagrangian to Eulerian 
values is commonly used, as defined by 
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In  figure 8 the values of /3 obtained by the present measurements are plotted against 
the turbulent Reynolds numbers Re,+. The decaying field for grid turbulence, 
10 6 Z, /M 6 20, downstream of the grid, was regarded as an initial decay period 
(e.g. see Comte-Bellot & Corrsin 1966; Sato & Yamamoto 1984). Therefore, the values 
of /3 are only dependent upon Re,+ under the present experimental conditions. It was 
found from figure 8 that, for the range of 20 5 Re, 5 70, /3 was within the values 
of 0.6 to 0.3, becoming lower as Re, increased, although this has still to be confirmed 
for a wider range of Re,. This tendency of /3 to vary with R e ,  agrees with the opinion 
of Hinze (1975) and the values are reasonably close to the calculations presented by 
Corrsin (1959), Saffman (1962), etc. and the experimental data of Snyder & Lumley 
(1971), etc. 

The determination of /3 enables us to predict the distribution of the Lagrangian 
correlation RL using the Eulerian RE.  In  figure 6, the curves of RE(7) against 
the compressed lag time 7 = /3r/v’ have been drawn as solid lines, along with the 
measured RL(7). The calculated values of RE(7=br /v’ )  agree so well with the 
experimental value of RL(7) that we could not on the whole distinguish the curves 
from the measured RL. 

Incidentally, it  should be noted that the correlation coefficient R E @ )  for 7 = r/v‘ 
is considered in the Eulerian frame moving with the mean flow, and so is different 
from the Eulerian autocorrelation coefficient RE(7’) measured at any fixed point with 
a lag time 7’ corresponding to r/u in the uniform flow of mean velocity 7. RE(7’) 
decreases rather faster than RL(7), as the dotted line in figure 8 indicates. if YE is 
the Eulerian integral timescale, 

the ratio /3’ of the Lagrangian and Eulerian integral timescales, 

is higher in value than 8. Substituting /3 = 0.6-0.3 and u ’ / u  = 0.05-0.1 into (27), 
we obtain /3’ = 12-3. This indicates that in the laboratory frame with the mean 
velocity 0, the Eulerian is obviously less than the Lagrangian, as pointed out by 
Saffman ( 1962). 

Figure 9 shows a comparison of the Lagrangian and Eulerian turbulent energy 
spectra for the frequency (nf )  region. Here, the Lagrangian spectrum EL,(nf) and the 
Eulerian one-dimensional energy spectrum EEl(nf) were obtained from the Fourier 
transformations 

03 

EL1(nf) = 4 RL(7) cos 2xnf7 d7, (28) 
0 

by using the correlation coefficients RL(7) and f ( r )  respectively. The Lagrangian 
spectra apparently consisted of lower-frequency components compared with the 
Eulerian ones. This also demonstrates that larger-scale motion contributes more 
effectively to the turbulent diffusion. 



194 Y. Sat0 and K .  Yamamoto 

nf (Hz) 

FIGURE 9. Comparison of Lagrangian and Eulerian energy spectra in isotropic turbulence. -, 
Lagrangian measurement; ---, Eulerian measurement; - - - - - -, slope of -% power law. (1)  , 
Re, = 40, n = 19.5 cm,/s, v‘lu = 5.6%; (2) 0, Re,, = 66, U = 35.0 cm/s, v’/n = 6.4%. 
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FIGURE 10. Distribution of R ,  and (v’/vb)z against 1. (a)  RL(q): -, exp(-T/T7), for: A, 
T, = 0.44; 0,  0.38; 0, 0.29; 0 , 0 . 2 6 ;  ., 0.20; 0 , 0 . 1 9 .  (6) ( V ’ / V ~ ) ~ :  ------, exp(--nt), for n = 1.2 
and 1.4. See table 1 for the symbols. 
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t+ = t / F m  

FIGURE 11. Lateral particle diffusion from a fixed source in a decaying turbulent field. Measured 
data: present work, 0, Re, = 66, n =  1.2, Zs=0.25; 0,  Re, = 48, n = 1.25, Zp=0.41; A, 
Re, = 25, n = 1.3, Zs = 0.79; Shlien & Corrsin (1974), x , Re, = 70, n = 1.25, Zs = 1.3. Calculated 
curves: (1) (shaded) equation (21) with n = 1.2 (-) and 1.4 (----); (2) -.-, equation (10); 
(3) -------, equation (31); (4) -.. .-, Y* = (2t*)f. 

t+ = I / Y m  

FIGURE 12. Lateral diffusion coefficient in a decaying turbulent field. (a) 9: us. t* ,  the shaded lines, 
equation(20)withn = 1.2(-)and 1.4(---);-.--,equation (9) ; - - - - - - - ,9:  = t * ; - - . .  .-,9: = 1. 
(a) 9 , J v  us. Re,. 
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4.2. Turbulent diffusion in the decaying$eld 
In a field of decaying turbulent intensity, the diffusion of fluid particles from a fixed 
point source is represented by Bt or as in (17) and (18a), or the dimensionless 
equations (20) and (21 a) .  To apply these diffusion equations, the assumptions of (16) 
and (12) have to be experimentally verified. This is done in figure 10, where in figure 
10 (a) the distribution of R,, and in figure 10 (b) the variation of the decay of turbulent 
intensity, are plotted against the newly defined time variable 7 as semi-logarithmic 
graphs. The results in figure 10 (a)  for the measured R L  and (16) with various T,, drawn 
by solid lines, agree well with each other and so verify (16). Further, it  can be seen 
from figure 10(b) that the decay law of (12) with the exponent n of about 1.2-1.4 
holds for the observed flow field (the distance of up to about 70 cm downstream of 
the grid in the present set-up) where we could regard it as the initial decay stage, 
since (12) can be transformed to 

Figure 11 shows the dimensionless variation of the lateral particle diffusion for the 
time elapsed, defined by (19), to compare the measured data with some calculated 
curves on log-log scales. The measured data agree better with (21 a )  containing the 
parameters n and Is, indicated by bold solid and broken lines in figure 11,  than with 
the other calculated curves such as (10) for negligible decay (chain line), the simple 
equation for a step function of R L  and for n = 0, 

and their asymptotical equation for long time, Y* = (2t*)k These results indicate that 
for a comparatively short time, t* < 1, the diffusion width Y* grows as (lo), without 
the decay effect, nearly proportionally to the time, but for longer times, t* > 1, it 
deviates by a small amount from the equation in accordance with the extent of the 
decay. 

Figure 12 shows the lateral turbulent diffusion coefficient 9$ in the decaying field. 
In figure 12 (a)  the effect of the energy decay on the diffusion coefficient is shown by 
comparing dimensionless curves against the elapsed time calculated from (20) with 
n = 1.2 or 1.4 for several values of the parameter Is, with the non-decay equation 
(9) (a dot-dash line) and its asymptotical lines; 9: = t*, for t * + O  and 9: = 1, for 
t * + o O .  As with Y* in figure 11, it  is found that 9: is almost proportional to t* at 
fist but for longer times is reduced by the effect of turbulent energy decay as values 
of n and Is increase. In  figure l2(b), the ratio of the measured data of gto = V; A L o  

to the molecular kinematic viscosity u are plotted against the turbulent Reynolds 
numbers Re,. Apparently, the turbulent diffusion coefficient Bto/v becomes larger 
with the increase of Re, ; it shows a reasonable value of about 30-100 times /3 of 20-70. 

5. Conclusions 
Exact measured data for turbulent diffusion and Lagrangian velocity autocorre- 

lation were obtained in approximately homogeneous isotropic grid turbulence using 
a newly developed optical tracer-particle tracking method. Comparing the experi- 
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mental data on the Lagrangian characteristics with theoretical analysis yielded the 
following remarkable results. 

(i) The turbulent intensity v' and the integral scale corresponding to the mixing 
length A, contribute effectively to the mixing and diffusion mechanisms of 
turbulence. 

(ii) The distributions of Lagrangian and Eulerian autocorrelation coefficients 
become fairly similar to each other after modification of then time axis with p, which 
represents the ratio of Lagrangian to Eulerian integral lengthscales. 

(iii) The ratio p is approximately 0.6 to 0.3 for the turbulent Reynolds-number 
range of Re, = 20-70, becoming lower as Re, increases. 

(iv) For a short release time the lateral particle diffusion (Y")i is roughly 
proportional to the time t almost independently of the turbulent energy decay. 

(v) For a time longer than the integral timescale FL, the turbulent energy decay 
exerts more influence on the diffusion process to weaken the growth of 7. 

We also offer some comments on how random motion by the random field itself 
affects the timescales ; specifically, whether the Lagrangian timescale is greater or less 
than the Eulerian timescale. The experimental results presented here corroborated 
that the Lagrangian integral timescale FL is less than the equivalent Eulerian 
timescale YE( = A,/u') in the frame relative to which the mean velocity is regarded 
as zero. This is consequently consistent with the previous theoretical approaches such 
as the independence approximation (Corrsin 1959 ; Saffman 1962 ; Weinstock 1976) 
and the computer simulation by Kraichnan (1970). In the laboratory frame with 
mean velocity V, it was of course obvious that the Lagrangian scale YL is several 
or more times greater than the Eulerian one YE, as expressed in (27). 

This work was partially supported by a Grant in Aid for Scientific Research 
(No. 58101009) from the Ministry of Education, Science and Culture of Japan. 

Appendix. Derivation of the diffusion equation in a decaying turbulent 
field 

A .  1. Relationship between a new variable 7 and real time t 
Batchelor & Townsend (1956) have suggested that even for a decaying turbulent field, 
the diffusion process of fluid particles could be treated as a steady approximation, 
by introducing a new time variable 17 defined by (1 1). 

The intrinsic timescale t, in (11) would be considered to be only dependent upon 
the characteristic lengthscale A(t) and the fluctuation velocity v'(t) in the turbulent 
field ; 

The relation of the longitudinal integral lengthscale A, and the fluctuation velocity 
u', obtained by the Eulerian measurements, can be predicted exactly as has been done 
by many previous investigations (e.g. Monin & Yaglom 1971). Then, assuming the 
empirical relations 

v' = u'; A = PA,, = const., (A 2) 

and using the relation between A, and u', we can determine the function form of t ,(t) 
as follows : Assuming that the decay of the turbulent energy u' obeys the power law, 

ufZ( t )  = A(to+t)-n, A = const., (A 3) 
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the longitudinal microscale for isotropic turbulence h , is given by 

Y. Sat0 and K. Yamamoto 

2Ovu12 - 20v(t0 + t) 
= - (du’2/dt) - n 

Further, the following approximation has been proposed by Sato et al. (1983) to relate 
A, and hf: 

A 0.05ReA cx u’Af f =  (A 5 )  A, V 

Combination of (A 2), (A 4) and (A 5) with (A 1) yields 

t o + t  
t,(t) = - C )  

C = const. 

Then, integrating (11) by use of (A 6), we obtain 

Further, replacing q /C  by q in equation (A 7) )  we then obtain 

t 
expq = l+-;  dt = to expqdq. 

t0 

A.2. Velocity autocorrelation and turbulent diffusion 

Assuming that the function RL(q-~’)  is homogeneous stationary, and using (3) and 
(4), we can determine the function form of r ( t )  and gt(t) as follows: By using the 
decay equation of turbulent intensity rewritten from (28)) 

the definition of 
v’(t) = (, exp (tnq), wi = ~ ’ ( 0 ) )  

and (A €9, and integrating the right-hand side of (4), we obtain 

1) 

(A 9) 
1 d F  
- - = wi2to exp ( - !pq )  5 exp{ - (1 -in) q’}RL(q-q’) dq’. 
2 dt 0 

Here, the application of the convolution integral formula 
t t 

~0f1(s)f2(t-s)d8 = I 0 f1(t-s)f2(s)ds,  

to (A 9) yields 

- wi2to exp((2m-l)q) exp(-mq’)R,(q’)dq’. 1 d 7  
2 dt 

Rewriting equation (A 10) with the aid of equation (A 8), we obtain (13) in $2. 
Further, the integration of (A 10) with respect to time t leads to (14) for F ( t ) .  

In  addition, (15) is derived from the differentiation of (A 10) or (14) with respect 
to t. 



Lagrangian measurement of fluid-particle motion 199 

R E F E R E N C E S  

BATCHELOR, G. K. & TOWNSEND, A. A. 1956 In Surveys in  Mechanics (ed. G .  K. Batchelor & 

COMTE-BELLOT, G. & CORRSIN, S. 1966 J. Fluid Mech. 25, 657. 
CORNELIUS, K. C. & Foss, J. F. 1978 Special Report to SQUID, 710. 8960-11, Michigan State 

CORRSIN, S. 1959 Adv. &ophys. 6, 161. 
CORRSIN, S. 1963 J. A t m s .  Sci. 20, 115. 
HINZE, J. 0. 1972 Prog. Heat Mass Transfer 6, 433. 
HINZE, J. 0. 1975 Turbulenue, 2nd edn, chap. 5. McGraw-Hill. 
KRAICHNAN, R. H. 1970 Phys. Fluids 13, 22. 
MONIN, A. S. & YAOLOM, A. M. 1971 Statistical Fluid Mechaniucs (ed. J. L. Lumley), vol. 1, chap. 

SAFFMAN, P. G. 1962 Appl. Sci. Res. 11A, 245. 
SATO, Y., YAMAMOTO, K. & MIZUSHINA, T. 1983 J. Chem. Engng Japan 16, 273. 
SATO, Y. & YAMAMOTO, K. 1984 AIChE J .  30,831. 
SHLIEN, D. J. & CORRSIN, S. 1974 J .  Fluid Mech. 62, 255. 
SNYDER, W. H. & LUMLEY, J. L. 1971 J. Fluid Mech. 48, 41. 
TAYLOR, G. I. 1921 Proc. Lo&. Math. SOC. 20, 196. 
WEINSTOCK, J. 1976 Phys. Fluids 11, 1702. 

R. M. Davies), p. 352. Cambridge University Press. 

University. 

5. M.I.T. Press. 


